Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions

Author:

Underwood Johnnie L.1,Murphy Collin G.1,Chen Janet1,Franse-Carman Linda1,Wood Irmgard1,Epstein David L.2,Alvarado Jorge A.1

Affiliation:

1. Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143; and

2. Department of Ophthalmology, Duke University, Durham, North Carolina 27710

Abstract

The regulation of transendothelial fluid flow by glucocorticoids was studied in vitro with use of human endothelial cells cultured from Schlemm’s canal (SCE) and the trabecular meshwork (TM) in conjunction with computer-linked flowmeters. After 2–7 wk of 500 nM dexamethasone (Dex) treatment, the following physiological, morphometric, and biochemical alterations were observed: a 3- to 5-fold increase in fluid flow resistance, a 2-fold increase in the representation of tight junctions, a 10- to 30-fold reduction in the mean area occupied by interendothelial “gaps” or preferential flow channels, and a 3- to 5-fold increase in the expression of the junction-associated protein ZO-1. The more resistive SCE cells expressed two isoforms of ZO-1; TM cells expressed only one. To investigate the role of ZO-1 in the aforementioned Dex effects, its expression was inhibited using antisense phosphorothioate oligonucleotides, and the response was compared with that observed with the use of sense and nonsense phosphorothioate oligonucleotides. Inhibition of ZO-1 expression abolished the Dex-induced increase in resistance and the accompanying alterations in cell junctions and gaps. These results support the hypothesis that intercellular junctions are necessary for the development and maintenance of transendothelial flow resistance in cultured SCE and TM cells and are likely involved in the mechanism of increased resistance associated with glucocorticoid exposure.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3