Norepinephrine-induced Ca2+waves depend on InsP3 and ryanodine receptor activation in vascular myocytes

Author:

Boittin François-Xavier1,Macrez Nathalie1,Halet Guillaume1,Mironneau Jean1

Affiliation:

1. Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, Centre National de la Recherche Scientifique Enseignement Supérieur Associé 5017, Université de Bordeaux II, 33076 Bordeaux Cedex, France

Abstract

In rat portal vein myocytes, Ca2+ signals can be generated by inositol 1,4,5-trisphosphate (InsP3)- and ryanodine-sensitive Ca2+ release channels, which are located on the same intracellular store. Using a laser scanning confocal microscope associated with the patch-clamp technique, we showed that propagated Ca2+ waves evoked by norepinephrine (in the continuous presence of oxodipine) were completely blocked after internal application of an anti-InsP3 receptor antibody. These propagated Ca2+ waves were also reduced by ∼50% and transformed in homogenous Ca2+ responses after application of an anti-ryanodine receptor antibody or ryanodine. All-or-none Ca2+ waves obtained with increasing concentrations of norepinephrine were transformed in a dose-response relationship with a Hill coefficient close to unity after ryanodine receptor inhibition. Similar effects of the ryanodine receptor inhibition were observed on the norepinephrine- and ACh-induced Ca2+ responses in non-voltage-clamped portal vein and duodenal myocytes and on the norepinephrine-induced contraction. Taken together, these results show that ryanodine-sensitive Ca2+release channels are responsible for the fast propagation of Ca2+ responses evoked by various neurotransmitters producing InsP3in vascular and visceral myocytes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3