Tumor necrosis factor-α downregulates intestinal NHE8 expression by reducing basal promoter activity

Author:

Xu Hua,Chen Huacong,Dong Jiali,Li Jing,Chen Rongji,Uno Jennifer K.,Ghishan Fayez K.

Abstract

NHE8 transporter is a member of the sodium/hydrogen exchanger (NHE) family. This transporter protein is expressed at the apical membrane of epithelial cells of kidney and intestine and contributes to vectorial Na+transport in both tissues. Although NaCl absorption has been shown to be reduced in diarrhea associated with colitis and enteritis, little is known about the role of Na+/H+exchange and the involvement of NHE isoforms in the pathogenesis of inflammatory disorders and the mechanism of inflammation-associated diarrhea. This study investigated the role of NHE8 in the setting of inflammatory states. Jejunal mucosa was harvested from trinitrobenzene sulfonic acid (TNBS) colitis rats or lipopolysaccharide (LPS) rats for RNA extraction and brush-border membrane protein purification. The human NHE8 gene promoter was cloned from human genomic DNA and characterized in Caco-2 cells. The promoter was further used to study the mechanisms of TNF-α-mediated NHE8 expression downregulation in Caco-2 cells. Results from Western blot and real-time PCR indicated that NHE8 protein and mRNA were significantly reduced in TNBS rats and LPS rats. In Caco-2 cells, TNF-α produces similar reduction levels in the endogenous NHE8 mRNA expression observed in our in vivo studies. The downregulation of NHE8 expression mediated by TNF-α could be blocked by transcription inhibitor actinomycin D, suggesting the involvement of transcriptional regulation. Further studies indicated that the human NHE8 gene transcription could be activated by Sp3 transcriptional factor, and TNF-α inhibits human NHE8 expression by reducing Sp3 interaction at the minimal promoter region of the human NHE8 gene. In conclusion, our studies suggest that TNF-α decreases NHE8 expression in inflammation induced by TNBS and LPS, which may contribute to the diarrhea associated with inflammation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3