Review: cellularity in bone marrow autografts for bone and fracture healing

Author:

Haeusner S.12ORCID,Jauković A.3ORCID,Kupczyk E.4,Herrmann M.12ORCID

Affiliation:

1. IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital of Wuerzburg, Wuerzburg, Germany

2. Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany

3. Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia

4. Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany

Abstract

The use of autografts, as primary cell and tissue source, is the current gold standard approach to treat critical size bone defects and nonunion defects. The unique mixture of the autografts, containing bony compartments and bone marrow (BM), delivers promising results. Although BM mesenchymal stromal cells (BM-MSCs) still represent a major target for various healing approaches in current preclinical research and respective clinical trials, their occurrence in the human BM is typically low. In vitro expansion of this cell type is regulatory challenging as well as time and cost intensive. Compared with marginal percentages of resident BM-MSCs in BM, BM mononuclear cells (BM-MNCs) contained in BM aspirates, concentrates, and bone autografts represent a readily available abundant cell source, applicable within hours during surgical procedures without the need for time-consuming and regulatory challenging cell expansion. This benefit is one reason why autografting has become a clinical standard procedure. However, the exact anatomy and cellularity of BM-MNCs in humans, which is strongly correlated to their unique mode of action and wide application range remains to be elucidated. The aim of this review was to present an overview of the current knowledge on these specific cell types found in human BM, emphasize the contribution of BM-MNCs in bone healing, highlight donor site dependence, and discuss limitations in the current isolation and subsequent characterization procedures. Hereby, the most recent and relevant examples of human BM-MNC cell characterization, flow cytometric analyses, and findings are summarized, with a strong focus on bone therapy.

Funder

Bundesministerium für Bildung und Forschung

Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Würzburg

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3