Hepatic ADTRP overexpression does not influence lipid and glucose metabolism

Author:

Defour Merel1,van Weeghel Michel23,Hermans Jill23,Kersten Sander1ORCID

Affiliation:

1. Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands

2. Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands

3. Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

Abstract

The peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors belonging to the nuclear receptor superfamily. Since most target genes of PPARs are implicated in lipid and glucose metabolism, regulation by PPARs could be used as a screening tool to identify novel genes involved in lipid or glucose metabolism. Here, we identify Adtrp, a serine hydrolase enzyme that was reported to catalyze the hydrolysis of fatty acid esters of hydroxy fatty acids (FAHFAs), as a novel PPAR-regulated gene. Adtrp was significantly upregulated by PPARα activation in mouse primary hepatocytes, liver slices, and whole liver. In addition, Adtrp was upregulated by PPARγ activation in 3L3-L1 adipocytes and in white adipose tissue. ChIP-SEQ identified a strong PPAR-binding site in the immediate upstream promoter of the Adtrp gene. Adenoviral-mediated hepatic overexpression of Adtrp in diet-induced obese mice caused a modest increase in plasma nonesterified fatty acids but did not influence diet-induced obesity, liver triglyceride levels, liver lipidomic profiles, liver transcriptomic profiles, plasma cholesterol, triglyceride, glycerol, and glucose levels. Moreover, hepatic Adtrp overexpression did not lead to significant changes in FAHFA levels in plasma or liver and did not influence glucose and insulin tolerance. Finally, hepatic overexpression of Adtrp did not influence liver triglycerides and levels of plasma metabolites after a 24-h fast. Taken together, our data suggest that despite being a PPAR-regulated gene, hepatic Adtrp does not seem to play a major role in lipid and glucose metabolism and does not regulate FAHFA levels.

Funder

Hartstichting

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3