Peroxisome turnover and diurnal modulation of antioxidant activity in retinal pigment epithelia utilizes microtubule-associated protein 1 light chain 3B (LC3B)

Author:

Daniele Lauren L.1,Caughey Jennifer1,Volland Stefanie23,Sharp Rachel C.1,Dhingra Anuradha1,Williams David S.23,Philp Nancy J.4,Boesze-Battaglia Kathleen1

Affiliation:

1. Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

2. Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California

3. Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California

4. Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania

Abstract

The retinal pigment epithelium (RPE) supports the outer retina through essential roles in the retinoid cycle, nutrient supply, ion exchange, and waste removal. Each day the RPE removes the oldest ~10% of photoreceptor outer segment (OS) disk membranes through phagocytic uptake, which peaks following light onset. Impaired degradation of phagocytosed OS material by the RPE can lead to toxic accumulation of lipids, oxidative tissue damage, inflammation, and cell death. OSs are rich in very long chain fatty acids, which are preferentially catabolized in peroxisomes. Despite the importance of lipid degradation in RPE function, the regulation of peroxisome number and activity relative to diurnal OS ingestion is relatively unexplored. Using immunohistochemistry, immunoblot analysis, and catalase activity assays, we investigated peroxisome abundance and activity at 6 AM, 7 AM (light onset), 8 AM, and 3 PM, in wild-type (WT) mice and mice lacking microtubule-associated protein 1 light chain 3B ( Lc3b), which have impaired phagosome degradation. We found that catalase activity, but not the amount of catalase protein, is 50% higher in the morning compared with 3 PM, in RPE of WT, but not Lc3b−/−, mice. Surprisingly, we found that peroxisome abundance was stable during the day in RPE of WT mice; however, numbers were elevated overall in Lc3b−/− mice, implicating LC3B in autophagic organelle turnover in RPE. Our data suggest that RPE peroxisome function is regulated in coordination with phagocytosis, possibly through direct enzyme regulation, and may serve to prepare RPE peroxisomes for daily surges in ingested lipid-rich OS.

Funder

HHS | NIH | National Eye Institute

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3