Aldosterone stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway

Author:

Winter Christian12,Kampik Nicole B.1,Vedovelli Luca34,Rothenberger Florina1,Păunescu Teodor G.35,Stehberger Paul A.1,Brown Dennis35,John Hubert6,Wagner Carsten A.1

Affiliation:

1. Institute of Physiology, Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland;

2. Clinics of Urology, University Hospital Düsseldorf, Düsseldorf, Germany;

3. MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts; and

4. Department of Pharmacology and Anesthesiology, University of Padova, Padua, Italy; and

5. Harvard Medical School, Boston, Massachusetts;

6. Clinic of Urology, Kantonsspital, Winterthur, Switzerland

Abstract

Urinary acidification in the collecting duct is mediated by the activity of H+-ATPases and is stimulated by various factors including angiotensin II and aldosterone. Classically, aldosterone effects are mediated via the mineralocorticoid receptor. Recently, we demonstrated a nongenomic stimulatory effect of aldosterone on H+-ATPase activity in acid-secretory intercalated cells of isolated mouse outer medullary collecting ducts (OMCD). Here we investigated the intracellular signaling cascade mediating this stimulatory effect. Aldosterone stimulated H+-ATPase activity in isolated mouse and human OMCDs. This effect was blocked by suramin, a general G protein inhibitor, and GP-2A, a specific Gαqinhibitor, whereas pertussis toxin was without effect. Inhibition of phospholipase C with U-73122, chelation of intracellular Ca2+with BAPTA, and blockade of protein kinase C prevented the stimulation of H+-ATPases. Stimulation of PKC by DOG mimicked the effect of aldosterone on H+-ATPase activity. Similarly, aldosterone and DOG induced a rapid translocation of H+-ATPases to the luminal side of OMCD cells in vivo. In addition, PD098059, an inhibitor of ERK1/2 activation, blocked the aldosterone and DOG effects. Inhibition of PKA with H89 or KT2750 prevented and incubation with 8-bromoadenosine-cAMP mildly increased H+-ATPase activity. Thus, the nongenomic modulation of H+-ATPase activity in OMCD-intercalated cells by aldosterone involves several intracellular pathways and may be mediated by a Gαqprotein-coupled receptor and PKC. PKA and cAMP appear to have a modulatory effect. The rapid nongenomic action of aldosterone may participate in the regulation of H+-ATPase activity and contribute to final urinary acidification.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3