Author:
Dedkova Elena N.,Blatter Lothar A.
Abstract
In the present study, we used laser scanning confocal microscopy in combination with fluorescent indicator dyes to investigate the effects of nitric oxide (NO) produced endogenously by stimulation of the mitochondria-specific NO synthase (mtNOS) or applied exogenously through a NO donor, on mitochondrial Ca2+ uptake, membrane potential, and gating of mitochondrial permeability transition pore (PTP) in permeabilized cultured calf pulmonary artery endothelial (CPAE) cells. Higher concentrations (100–500 μM) of the NO donor spermine NONOate (Sper/NO) significantly reduced mitochondrial Ca2+ uptake and Ca2+ extrusion rates, whereas low concentrations of Sper/NO (<100 μM) had no effect on mitochondrial Ca2+ levels ([Ca2+]mt). Stimulation of mitochondrial NO production by incubating cells with 1 mM l-arginine also decreased mitochondrial Ca2+ uptake, whereas inhibition of mtNOS with 10 μM l- N5-(1-iminoethyl)ornithine resulted in a significant increase of [Ca2+]mt. Sper/NO application caused a dose-dependent sustained mitochondrial depolarization as revealed with the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Blocking mtNOS hyperpolarized basal mitochondrial membrane potential and partially prevented Ca2+-induced decrease in TMRE fluorescence. Higher concentrations of Sper/NO (100–500 μM) induced PTP opening, whereas lower concentrations (<100 μM) had no effect. The data demonstrate that in calf pulmonary artery endothelial cells, stimulation of mitochondrial Ca2+ uptake can activate NO production in mitochondria that in turn can modulate mitochondrial Ca2+ uptake and efflux, demonstrating a negative feedback regulation. This mechanism may be particularly important to protect against mitochondrial Ca2+ overload under pathological conditions where cellular [NO] can reach very high levels.
Publisher
American Physiological Society
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献