The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway

Author:

Hao Yun-Ling1,Fang Hong-Cheng2,Zhao Hong-Lei1,Li Xiao-Li1,Luo Ying1,Wu Bao-Quan1,Fu Ming-Jie3,Liu Wei3,Liang Jin-Jie1,Chen Xie-Hui1

Affiliation:

1. Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, People’s Republic of China

2. Shenzhen Baoan Shajing People's Hospital of Guangzhou Medical University, Shenzhen, People’s Republic of China

3. Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China

Abstract

Recent studies have uncovered the vital roles played by microRNAs in regulating cardiac injury. Among them, the cardiac enriched microRNA-1 (miR-1) has been extensively studied and proven to be detrimental to cardiac myocytes. Hence, the current study aimed to explore whether miR-1 affects myocardial ischemia-reperfusion injury (MIRI) in rats undergoing sevoflurane preconditioning and the underlying mechanism. After successful model establishment, rats with MIRI were transfected with mimics or inhibitors of miR-1, or siRNA against MAPK3, and then were injected with sevoflurane. A luciferase reporter gene assay was conducted to evaluate the targeting relationship between miR-1 and MAPK3. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were employed to evaluate the expressions of miR-1, MAPK3, phosphatidylinositol 3-kinase (PI3K), and Akt. Additionally, the concentration of lactate dehydrogenase (LDH) was determined. Cell apoptosis and viability were assessed using TUNEL and cell counting kit-8 assays, and the ischemic area at risk and infarct size were detected using Evans blue and triphenyltetrazolium chloride staining. MAPK3 was found to be the target gene of miR-1. miR-1 expressed at a high level whereas MAPK3 expressed at a low level in MIRI rats. Overexpressing miR-1 or silencing MAPK3 blocked the PI3K/Akt pathway to increase cell apoptosis, ischemic area at risk, and infarct area but decreased cell viability and increased LDH concentration. In contrast, miR-1 downregulation abrogated the effects induced by miR-1 mimics or siRNA against MAPK3. These findings indicate that inhibition of miR-1 promotes MAPK3 to protect against MIRI in rats undergoing sevoflurane preconditioning through activation of the PI3K/Akt pathway.

Funder

Key Projects of Shenzhen Municipality Health and Family Planning Commission

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3