Atrophy, but not necrosis, in rabbit skeletal muscle denervated for periods up to one year

Author:

Ashley Z.,Sutherland H.,Lanmüller H.,Russold M. F.,Unger E.,Bijak M.,Mayr W.,Boncompagni S.,Protasi F.,Salmons S.,Jarvis J. C.

Abstract

Our understanding of the effects of long-term denervation on skeletal muscle is heavily influenced by an extensive literature based on the rat. We have studied physiological and morphological changes in an alternative model, the rabbit. In adult rabbits, tibialis anterior muscles were denervated unilaterally by selective section of motor branches of the common peroneal nerve and examined after 10, 36, or 51 wk. Denervation reduced muscle mass and cross-sectional area by 50–60% and tetanic force by 75%, with no apparent reduction in specific force (force per cross-sectional area of muscle fibers). The loss of mass was associated with atrophy of fast fibers and an increase in fibrous and adipose connective tissue; the diameter of slow fibers was preserved. Within fibers, electron microscopy revealed signs of ultrastructural disorganization of sarcomeres and tubular systems. This, rather than the observed transformation of fiber type from IIx to IIa, was probably responsible for the slow contractile speed of the muscles. The muscle groups denervated for 10, 36, or 51 wk showed no significant differences. At no stage was there any evidence of necrosis or regeneration, and the total number of fibers remained constant. These changes are in marked contrast to the necrotic degeneration and progressive decline in mass and force that have previously been found in long-term denervated rat muscles. The rabbit may be a better choice for a model of the effects of denervation in humans, at least up to 1 yr after lesion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference60 articles.

1. Effects of chronic electrical stimulation on contractile properties of long-term denervated rat skeletal muscle.

2. Determination of the Chronaxie and Rheobase of Denervated Limb Muscles in Conscious Rabbits

3. Expression of Myosin Isoforms in Denervated, Cross-Reinnervated, and Electrically Stimulated Rabbit Muscles

4. Bakou S, Cherel Y, Gabinaud B, Guigand L, Wyers M. Type-specific changes in fibre size and satellite cell activation following muscle denervation in two strains of turkey (Meleagris gallopavo). J Anat 188: 677–691, 1996.

5. Bobinac D, Malnar-Dragojevic D, Bajek S, Soic-Vranic T, Jerkovic R. Muscle fiber type composition and morphometric properties of denervated rat extensor digitorum longus muscle. Croat Med J 41: 294–297, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3