Kv7.1 surface expression is regulated by epithelial cell polarization

Author:

Andersen Martin N.1,Olesen Søren-Peter1,Rasmussen Hanne B.1

Affiliation:

1. Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

The potassium channel KV7.1 is expressed in the heart where it contributes to the repolarization of the cardiac action potential. In addition, KV7.1 is expressed in epithelial tissues where it plays a role in salt and water transport. Mutations in the kcnq1 gene can lead to long QT syndrome and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate KV7.1 surface expression, we have investigated the trafficking of KV7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using a modified version of the classical calcium switch. We discovered that KV7.1 exhibits a very dynamic localization pattern during the calcium switch. When MDCK cells are kept in low calcium medium, KV7.1 is mainly observed at the plasma membrane. During the first hours of the switch, KV7.1 is removed from the plasma membrane and an intracellular accumulation in the endoplasmic reticulum (ER) is observed. The channel is retained in the ER until the establishment of the lateral membranes at which point KV7.1 is released from the ER and moves to the plasma membrane. Our data furthermore suggest that while the removal of KV7.1 from the cell surface and its accumulation in the ER could involve activation of protein kinase C, the subsequent release of KV7.1 from the ER depends on phosphoinositide 3-kinase (PI3K) activation. In conclusion, our results demonstrate that KV7.1 surface expression is regulated by signaling mechanisms involved in epithelial cell polarization in particular signaling cascades involving protein kinase C and PI3K.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3