Determination of cell volume as part of metabolomics experiments

Author:

Sidhu Karatatiwant Singh1,Amiel Eyal2,Budd Ralph C.3,Matthews Dwight E.13ORCID

Affiliation:

1. Department of Chemistry, The University of Vermont, Burlington, Vermont

2. Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, The University of Vermont, Burlington, Vermont

3. Department of Medicine, The University of Vermont, Burlington, Vermont

Abstract

Cells regulate their cell volume, but cell volumes may change in response to metabolic and other perturbations. Many metabolomics experiments use cultured cells to measure changes in metabolites in response to physiological and other experimental perturbations, but the metabolomics workflow by mass spectrometry only determines total metabolite amounts in cell culture extracts. To convert metabolite amount to metabolite concentration requires knowledge of the number and volume of the cells. Measuring only metabolite amount can lead to incorrect or skewed results in cell culture experiments because cell size may change due to experimental conditions independent of change in metabolite concentration. We have developed a novel method to determine cell volume in cell culture experiments using a pair of stable isotopically labeled phenylalanine internal standards incorporated within the normal liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics workflow. This method relies on the flooding-dose technique where the intracellular concentration of a particular compound (in this case phenylalanine) is forced to equal its extracellular concentration. We illustrate the LC-MS/MS technique for two different mammalian cell lines. Although the method is applicable in general for determining cell volume, the major advantage of the method is its seamless incorporation within the normal metabolomics workflow.

Funder

HHS | NIH | NIH Office of the Director

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3