Sulfate transport in apical membrane vesicles isolated from tracheal epithelium

Author:

Elgavish A.,DiBona D. R.,Norton P.,Meezan E.

Abstract

Sulfate uptake in apical membrane vesicles isolated from bovine tracheal epithelium is shown to occur into an osmotically sensitive intravesicular space, via a carrier-mediated system. This conclusion is based on three lines of evidence: 1) saturation kinetics; 2) substrate specificity; and 3) inhibition by the anion transport inhibitors SITS and DIDS. The affinity of the transport system is highest in low ionic strength media (apparent Km = 0.13 mM) and decreases in the presence of gluconate (apparent Km = 0.68 mM). Chloride appears to cis-inhibit sulfate uptake and to trans-stimulate sulfate efflux. Cis-inhibition and trans-stimulation studies with a variety of anions indicate that this exchange system may be shared by HCO3-, S2O3(2-), SeO4(2-), and MoO4(2-) but not by H2PO4- or HAsO4(2-). Studies indicate that protons may play two distinct roles in sulfate transport in this system. 1) Their possible modifier role is suggested by the fact that protons affect SO2-4 transport in an uncompetitive manner. 2) The possibility that the proton gradient may act as an energy source for a secondary active transport is indicated by the fact that the imposition of a proton gradient stimulates a transient movement of sulfate in to the tracheal apical membrane vesicle, against its concentration gradient, causing an "overshoot" phenomenon. Our studies show that the carrier-mediated system can function in the absence of chloride. The overshoot observed in the presence of a proton gradient (OH- gradient) indicates that under those conditions the mechanism of transport may be a SO4(2-)-OH- exchange. The fact that chloride cis-inhibits and trans-stimulates SO4(2-) transport indicates that SO2-4 uptake may also occur via a SO4(2-)-Cl- exchange. Studies carried out so far do not enable us to conclude unequivocally whether the tracheal apical membrane system displays two distinct carrier activities (SO4(2-)-Cl-; SO4(2-)-OH-) or one anion exchanger, which like the erythrocyte anion exchanger, may interact with SO4(2-), Cl-, and H+. The fact that the anion transport inhibitors DIDS and SITS inhibit SO4(2-) transport in the presence or absence of chloride suggests that the latter possibility may be the case.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3