Myofibrillar M-band structure and composition of physiologically defined rat motor units

Author:

Thornell L. E.,Carlsson E.,Kugelberg E.,Grove B. K.

Abstract

The isometric contraction time of 19 fast and slow rat motor units in the soleus and the anterior tibial muscles were recorded. The motor unit fibers, subsequently distinguished by glycogen depletion, were histochemically differentiated into fiber types and analyzed immunohistochemically for high molecular weight M-band proteins, as well as ultrastructurally for M-band fine structure, Z-disc width, and volume density of mitochondria. All fibers belonging to slow-twitch motor units in both the anterior tibialis and soleus muscles were histochemically classed as type 1. They lacked the Mr 165,000 M-protein, showed ultrastructurally a four-line M-band pattern, and had broad Z-discs, whereas the volume density of the mitochondria varied considerably. Muscle fibers belonging to the fast-twitch motor units were histochemically classed as types 2A and 2B in anterior tibialis and type 2A in soleus. They contained a three- or a five-line M-band pattern and medium-to-thin Z-discs in the anterior tibialis and a five-line M-band pattern and broad Z-discs in the soleus. Furthermore, the volume density of mitochondria showed considerable variation within and in between soleus and anterior tibialis type 2 fibers. As the differences in M-band composition and structure between fiber types overrode the intragroup variability in contraction times of slow and fast units within and between the two muscles, it is concluded that the M-band composition and structure is fundamentally related to whether the fiber is innervated by a slow or fast motor neuron, whereas other parameters such as contraction time, Z-disc width, and mitochondrial content of fibers of fast and slow units are relative and vary between muscles. Thus the M-band appearance can be used as a reliable marker to distinguish between fibers of slow- and fast-twitch motor units in rat leg muscles.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3