Measurement of Na+-K+ coupling ratio of Na+-K+-ATPase in rabbit proximal tubules

Author:

Avison M. J.,Gullans S. R.,Ogino T.,Giebisch G.,Shulman R. G.

Abstract

A combination of 23Na nuclear magnetic resonance (NMR) spectroscopy and a K+-selective electrode was used to make simultaneous measurements of net Na+ and K+ fluxes across plasma membranes of rabbit renal proximal tubules after an abrupt stimulation of Na+-K+-ATPase. After a step in extracellular K+ concentration ([K+]o) from low to higher concentration (0.1-0.3 mM to 0.5-5.2 mM) at 25 degrees C, net extrusion of Na+ and uptake of K+ were observed. These fluxes were completely inhibited by ouabain (10(-3) M). Because initial rates of K+ uptake in presence or absence of Ba2+ (a known inhibitor of plasma membrane K+ conductance) were indistinguishable, net K+ flux was virtually unidirectional. Because suspension buffers contained neither glucose nor amino acids and the ratio of net Na+ and K+ fluxes (JNa and JK, respectively) was constant over a wide range of transmembrane Na+ gradients and absolute values of the JNa and JK, it is likely that changes in electrogenic or passive net fluxes across plasma membranes were insignificant in the first 30–45 s after the [K+]o step. Thus the ratio of these initial net Na+ and K+ fluxes corresponds closely to the Na+-K+ coupling ratio of the Na+-K+-ATPase. In 12 experiments, the measured Na+-K+-ATPase coupling ratio was 1.54 +/- 0.07 (SE). The coupling ratio was constant over a wide range of intracellular Na+ content, intracellular sodium concentration, [K+]o and transmembrane Na+ gradient. The coupling ratio also remained constant over an eightfold range of Na+-K+-ATPase rates.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-cell NMR: Why and how?;Progress in Nuclear Magnetic Resonance Spectroscopy;2022-10

2. Stationary and Nonstationary Ion and Water Flux Interactions in Kidney Proximal Tubule: Mathematical Analysis of Isosmotic Transport by a Minimalistic Model;Reviews of Physiology, Biochemistry and Pharmacology;2019

3. Sodium and Chloride Transport: Proximal Nephron;Seldin and Giebisch's The Kidney;2013

4. Applied Renal Physiology;Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice;2012

5. Sodium and Chloride Transport;Seldin and Giebisch's The Kidney;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3