Reactive oxygen species formation in the transition to hypoxia in skeletal muscle

Author:

Zuo Li,Clanton Thomas L.

Abstract

Many tissues produce reactive oxygen species (ROS) during reoxygenation after hypoxia or ischemia; however, whether ROS are formed during hypoxia is controversial. We tested the hypothesis that ROS are generated in skeletal muscle during exposure to acute hypoxia before reoxygenation. Isolated rat diaphragm strips were loaded with dihydrofluorescein-DA (Hfluor-DA), a probe that is oxidized to fluorescein (Fluor) by intracellular ROS. Changes in fluorescence due to Fluor, NADH, and FAD were measured using a tissue fluorometer. The system had a detection limit of 1 μM H2O2 applied to the muscle superfusate. When the superfusion buffer was changed rapidly from 95% O2 to 0%, 5%, 21%, or 40% O2, transient elevations in Fluor were observed that were proportional to the rise in NADH fluorescence and inversely proportional to the level of O2 exposure. This signal could be inhibited completely with 40 μM ebselen, a glutathione peroxidase mimic. After brief hypoxia exposure (10 min) or exposure to brief periods of H2O2, the fluorescence signal returned to baseline. Furthermore, tissues loaded with the oxidized form of the probe (Fluor-DA) showed a similar pattern of response that could be inhibited with ebselen. These results suggest that Fluor exists in a partially reversible redox state within the tissue. When Hfluor-loaded tissues were contracted with low-frequency twitches, Fluor emission and NADH emission were significantly elevated in a way that resembled the hypoxia-induced signal. We conclude that in the transition to low intracellular Po2, a burst of intracellular ROS is formed that may have functional implications regarding skeletal muscle O2-sensing systems and responses to acute metabolic stress.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3