130-kDa smooth muscle myosin light chain kinase is transcribed from a CArG-dependent, internal promoter within the mouse mylk gene

Author:

Yin Feng,Hoggatt April M.,Zhou Jiliang,Herring B. Paul

Abstract

The 130-kDa smooth muscle myosin light chain kinase (smMLCK) is a Ca2+/CaM-regulated enzyme that plays a pivotal role in the initiation of smooth muscle contraction and regulation of cellular migration and division. Despite the critical importance of smMLCK in these processes, little is known about the mechanisms regulating its expression. In this study, we have identified the proximal promoter of smMLCK within an intron of the mouse mylk gene. The mylk gene encodes at least two isoforms of MLCK (130 and 220 kDa) and telokin. Luciferase reporter gene assays demonstrated that a 282-bp fragment (−167 to +115) of the smMLCK promoter was sufficient for maximum activity in A10 smooth muscle cells and 10T1/2 fibroblasts. Deletion of the 16 bp between −167 and −151, which included a CArG box, resulted in a nearly complete loss of promoter activity. Gel mobility shift assays and chromatin immunoprecipitation assays demonstrated that serum response factor (SRF) binds to this CArG box both in vitro and in vivo. SRF knockdown by short hairpin RNA decreased endogenous smMLCK expression in A10 cells. Although the SRF coactivator myocardin induced smMLCK expression in 10T1/2 cells, myocardin activated the promoter only two- to fourfold in reporter gene assays. Addition of either intron 1 or 6 kb of the 5′ upstream sequence did not lead to any further activation of the promoter by myocardin. The proximal smMLCK promoter also contains a consensus GATA-binding site that bound GATA-6. GATA-6 binding to this site decreased endogenous smMLCK expression, inhibited promoter activity in smooth muscle cells, and blocked the ability of myocardin to induce smMLCK expression. Altogether, these data suggest that SRF and SRF-associated factors play a key role in regulating the expression of smMLCK.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3