Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor

Author:

Wang Xiaoyu12,McLennan Susan V.123,Allen Terri J.4,Tsoutsman Tatiana25,Semsarian Christopher256,Twigg Stephen M.123

Affiliation:

1. Endocrinology Research Laboratories and the

2. Discipline of Medicine, The University of Sydney, Sydney;

3. Department of Endocrinology, Royal Prince Alfred Hospital, Sydney;

4. Baker Heart and Diabetes Research Institute, Melbourne; and

5. Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and

6. Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia

Abstract

Diabetic cardiomyopathy is characterized by interstitial fibrosis and cardiomyocyte hypertrophy and apoptosis. Also known as CCN2, connective tissue growth factor (CTGF) is implicated in the fibrosis; however, whether it contributes to cardiomyocytes changes and adverse effects of high glucose and lipids on these cells remains unknown. Hearts from streptozotocin-induced diabetic rats had elevated CTGF and changes of pathological myocardial hypertrophy, fibrosis, and cardiomyocyte apoptosis. Rat H9c2 cardiomyocytes were then treated with recombinant human (rh)CTGF, high glucose, or the saturated free fatty acid palmitate. Each reagent induced cell hypertrophy, as indicated by the ratio of total protein to cell number, cell size, and gene expression of cardiac hypertrophy marker genes atrial natriuretic peptide (ANP), and α-skeletal actin. Each treatment also caused apoptosis measured by increased caspase3/7 activity, apoptotic cells by transferase-mediated dUTP nick end labeling (TUNEL) assay, and lower viable cell number. Further studies showed CTGF mRNA was rapidly induced by high glucose and palmitate in H9c2 cells and in mouse neonatal cardiomyocyte primary cultures. small interfering RNA against CTGF blocked the high glucose and palmitate induction of hypertrophy and apoptosis. In addition, these CTGF effects were through the tyrosine kinase A (TrkA) receptor with tyrosine kinase activity, which has previously been implicated in CTGF signaling: TrkA was phosphorylated by CTGF, and a specific TrkA blocker abrogated CTGF-induced effects on hypertrophy and apoptosis. For the first time in any system, fatty acid is newly identified as a regulator of CTGF, and this work implicates autocrine CTGF as a mediator of adverse effects of high glucose and fatty acids in cardiomyocytes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3