Mechanisms of electrolyte transport across the endometrium. I. Regulation by PGF2 alpha and cAMP

Author:

Vetter A. E.1,O'Grady S. M.1

Affiliation:

1. Department of Veterinary PathoBiology, University of Minnesota, St.Paul 55108, USA.

Abstract

The purpose of this study was to characterize the transport mechanisms in endometrial epithelial cells that are responsible for regulation of Na and K concentrations in uterine luminal fluid. Porcine endometrial tissues were mounted in Ussing chambers and bathed in plasmalike Ringer solution. The mean basal short-circuit current (Isc) was 40 microA/cm2, and the mean tissue conductance was 3.6 mS/cm2. Addition of amiloride to the luminal solution inhibited 86% of the basal Isc. Concentration-response experiments using amiloride analogues showed a rank order of potency of benzamil > amiloride > 5-(N-methyl-N-isobutyl)-amiloride in blocking the Isc, with no response to ethylisopropylamiloride. Na channel immunoreactivity was localized to the apical membrane of surface epithelial cells. The Na-to-K selectivity ratio of the amiloride-sensitive Na channel was calculated to be 6.4:1. Prostaglandin (PG) F2 alpha or 8-(chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (CPT-cAMP) added to the luminal solution stimulated a twofold increase in Isc that was inhibited by pretreatment with amiloride. Experiments using both amphotericin B-permeabilized tissues and intact tissues showed that PGF2 alpha and cAMP increased Na absorption by activation of basolateral K channels. Treatment of the luminal solution with 4-aminopyridine produced an effect on Isc that was consistent with block of K secretion and a subsequent decrease in Na absorption. These experiments showed that Na and K transport are tightly coupled processes occurring under basal conditions in surface endometrial epithelial cells and that these processes are regulated by PGF2 alpha and cAMP.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3