Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose

Author:

Chini E. N.1,Dousa T. P.1

Affiliation:

1. Department of Physiology, Mayo Clinic and Foundation, Rochester,Minnesota 55905, USA.

Abstract

Cyclic ADP-ribose (cADPR) is a potent mediator of Ca2+ mobilization from intracellular stores in sea urchin eggs that ultimately activates the ryanodine channel. We now report that certain long-chain acyl-CoA derivative metabolites (14-18 carbons in length), such as palmitoyl-CoA, greatly potentiate the effect of cADPR on Ca2+ release. Furthermore, in higher concentrations, palmitoyl-CoA and other closely related long-chain acyl-CoA derivatives trigger Ca2+ release apparently through the ryanodine channel in sea urchin egg homogenates. Palmitoyl-CoA-induced Ca2+ release was suppressed by ruthenium red, spermine, and the calmodulin antagonist N-(6-aminohexyl)-1-naphthalenesulfonamide, which all prevent activation of the ryanodine channel, but not by heparin or thionicotinamide-NADP. In addition, cADPR was able to desensitize the sea urchin egg homogenates to the subsequent Ca2+ release induced by palmitoyl-CoA and vice versa. In contrast, neither inositol 1,4,5-trisphosphate (IP3) nor the newly identified Ca2+ release agonist nicotinate adenine dinucleotide phosphate was able to desensitize the homogenate to palmitoyl-CoA, indicating that palmitoyl-CoA probably acts selectively by activating the ryanodine channel, but, unlike cADPR, palmitoyl-CoA might act directly on this channel. Finally, we found that palmitoyl-CoA was able to counteract the inhibitory effect of Mg2+ and spermine, which, in physiological concentrations, suppress specifically the cADPR-induced Ca2+ release. We propose that palmitoyl-CoA, present in micromolar concentrations, may trigger Ca2+ release through the ryanodine channel and, in lower concentrations, may increase the sensitivity of the Ca2+ release system to cADPR. Thus palmitoyl-CoA may serve as a regulatory link between the intermediary metabolism and the cADPR-induced Ca2+ release signaling pathway.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3