Mechanism of swelling activation of K-Cl cotransport in inside-out vesicles of LK sheep erythrocyte membranes

Author:

Kelley S. J.1,Dunham P. B.1

Affiliation:

1. Department of Biology, Syracuse University, New York 13244, USA.

Abstract

Stimulation by swelling of K-Cl cotransport was studied in inside-out vesicles (IOVs) made from membranes of LK sheep erythrocytes. The purpose was to understand this stimulation in terms of the three-state process proposed for regulation of the cotransporter (P.B. Dunham, J. Klimczak, and P.J. Logue. J. Gen. Physiol. 101: 733-765, 1993). The first step in this process, A --> B, is rate limiting and controlled by transphosphorylation reactions. The second step, B --> C, is fast; its control is unknown. Predictions were that maximum velocity (Jmax) of cotransport increases with A --> B and concentration at one-half Jmax (K1/2) of K+ as a substrate decreases with B --> C. We tested the hypothesis that most transporters in IOVs are in the B state and that swelling activates cotransport in vesicles by the B --> C conversion. In accordance with this hypothesis, swelling should activate K+ influx with no discernable delay. It did. K1/2 for K+ should decrease with swelling and Jmax should not change. K1/2 decreased 10-fold, and Jmax did not change. Inhibitors of transphosphorylation, reactions of A --> B, should not affect K+ flux into IOVs, and they did not. The results support the hypothesis: swelling activation of K+ flux into IOVs corresponds to B --> C. A mechanical change in the membrane causes a specific change in the cotransporter: an increase in apparent affinity for K+.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3