Islet constitutive nitric oxide synthase: biochemical determination and regulatory function

Author:

Salehi A.1,Carlberg M.1,Henningson R.1,Lundquist I.1

Affiliation:

1. Department of Pharmacology, University of Lund, Sweden.

Abstract

Recent immunohistochemical findings suggested that a constitutive nitric oxide synthase (cNOS) resides in endocrine pancreas. Here we provide direct biochemical evidence for the presence of cNOS activity in isolated islets. The regulating influence of this nitric oxide synthase (NOS) activity for islet hormone release was also investigated. We observed that cNOS activity could be quantitated in islet homogenates by monitoring the formation of L-citrulline from L-arginine using an Amprep CBA cation-exhange minicolumn before derivatization with o-phthaldialdehyde and subsequent high-performance liquid chromatography analysis. The islet NOS was dependent on both Ca2+ and calmodulin and suppressed by the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). This effect was enantiomerically specific. Islet insulin release induced by a mixture of L-arginine and glucose was enhanced by L-NAME, whereas L-arginine-induced glucagon release was inhibited. The effect of L-NAME on insulin release was dose dependently potentiated by increasing glucose concentrations, suggesting that glucose is an important regulator of islet NO production. Complementary in vivo studies showed similar results, i.e., the insulin secretory response to a mixture of glucose and L-arginine was extremely enhanced by pretreatment with L-NAME, whereas L-arginine-stimulated glucagon response was suppressed. Finally, in isolated islets, the intracellular nitric oxide (NO) donor hydroxylamine suppressed insulin release and increased glucagon release. In summary, the islets of Langerhans contain a constitutive, Ca2+/calmodulin-dependent isoform of NOS. Islet NO suppressed insulin but enhanced glucagon secretion. The data also suggest a negative feedback by NO on glucose-induced insulin release. The islet NO system is a novel and important regulatory factor in insulin and glucagon secretion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3