Deactivation of CFTR-Cl conductance by endogenous phosphatases in the native sweat duct

Author:

Reddy M. M.1,Quinton P. M.1

Affiliation:

1. Division of Biomedical Sciences, University of California, Riverside92521, USA.

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation-activated Cl channel. However, very little is known about the endogenous mechanism(s) of deactivation of CFTR-Cl conductance (CFTR-GCl) in vivo. We studied the action of endogenous phosphatases in regulation of the adenosine 3',5'-cyclic monophosphate (cAMP)- and ATP-induced CFTR-GCl in the apical membrane of microperfused preparations of basolaterally permeabilized native sweat duct. Activation of CFTR-GCl was monitored by measuring the apical Cl diffusion potentials and GCl, which spontaneously deactivated on removal of cAMP. This spontaneous loss of CFTR-GCl activity could be prevented by a cocktail of phosphatase inhibitors (fluoride, vanadate, and okadaic acid). We studied the effects of each of these phosphatase antagonists on the rate of deactivation of CFTR-GCl after cAMP washout. In contrast to vanadate or fluoride, okadaic acid virtually prevented deactivation of CFTR-GCl after cAMP washout. We conclude that either or both protein phosphatases 1 and 2A are responsible for the dephosphorylation deactivation of CFTR-GCl in vivo.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3