Calcium sparks and [Ca2+]i waves in cardiac myocytes

Author:

Cheng H.1,Lederer M. R.1,Lederer W. J.1,Cannell M. B.1

Affiliation:

1. Department of Physiology, University of Maryland, Baltimore School ofMedicine 21201, USA.

Abstract

Local elevations in intracellular calcium ("Ca2+ sparks") in heart muscle are elementary sarcoplasmic reticulum (SR) Ca(2+)-release events. Ca2+ sparks occur at a low rate in quiescent cells but can also be evoked by electrical stimulation of the cell to produce the cell-wide Ca2+ transient. In this study we investigate how Ca2+ sparks are related to propagating waves of elevated cytosolic Ca2+ induced by "Ca2+ overload." Single ventricular myocytes from rat were loaded with the Ca(2+)-sensitive indicator fluo 3 and imaged with a confocal microscope. After extracellular Ca2+ concentration was increased from 1 to 10 mM to produce Ca2+ overload, the frequency of spontaneous Ca2+ sparks, which occur at the t tubule/SR junction, increased approximately 4-fold, whereas the spark amplitude and spatial size increased 4.1-and 1.7-fold, respectively. In addition, a spectrum of larger subcellular events, including propagating Ca2+ waves, was observed. Ca2+ sparks were seen to occur at the majority (65%) of the sites of wave initiation. For slowly propagating Ca2+ waves, discrete Ca(2+)-release events, similar to Ca2+ sparks, were detected in the wave front. These Ca2+ sparks appeared to recruit other sparks along the wave front so that the wave progressed in a saltatory manner. We conclude that Ca2+ sparks are elementary events that can explain both the initiation and propagation of Ca2+ waves. In addition, we show that Ca2+ waves and electrically evoked Ca2+ transients have the same time course and interact with each other in a manner that is consistent with both phenomena having the same underlying mechanism(s). These results suggest that SR Ca2+ release during Ca2+ waves, like that during normal excitation-contraction coupling, results from the spatial and temporal summation of Ca2+ sparks.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 431 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3