Swelling-activated anion conductance in skate hepatocytes: regulation by cell Cl- and ATP

Author:

Jackson P. S.1,Churchwell K.1,Ballatori N.1,Boyer J. L.1,Strange K.1

Affiliation:

1. Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672,USA.

Abstract

Cell swelling activates an outwardly rectifying anion conductance in mammalian cells. The channel responsible for this conductance mediates volume-regulatory efflux of organic osmolytes such as taurine. We observed a similar conductance in hepatocytes from the skate Raja erinacea. Whole cell Cl- conductance was increased > 100-fold by a 2-fold increase in hepatocyte volume. The conductance was outwardly rectifying and had a relative cation permeability of approximately 0.2. Cation permeability was increased by reductions in patch pipette CsCl concentration, suggesting that the channel pore contains saturable anion and cation binding sites with different anion and cation affinities. The conductance had a broad anion selectivity and a relative taurine permeability of 0.17. Activation of the conductance required intracellular ATP or a nonhydrolyzable ATP analogue. Elevation of intracellular Cl- from 20 to 155 mM reduced current activation while the rate and extent of cell swelling were unaffected. Reduction of intracellular Cl- concentration to 5-10 mM caused spontaneous current activation without cell swelling. These results suggest that increases in cell Cl- levels increase the volume set point of the channel. We propose that the main function of the outwardly rectifying anion channel is nonselective transport of organic solutes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3