Resistance to osmotic lysis in BXD-31 mouse erythrocytes: association with upregulated K-Cl cotransport

Author:

Armsby C. C.1,Stuart-Tilley A. K.1,Alper S. L.1,Brugnara C.1

Affiliation:

1. Department of Laboratory Medicine, The Children's Hospital, Boston,Massachusetts 02115, USA.

Abstract

The decreased osmotic fragility and reduced K+ content of BXD-31 mouse erythrocytes arise from variation at a single genetic locus. We compared ion transport in erythrocytes from BXD-31 mice and the parental strain, DBA/2J. The strains had similar rates for Na-K pump, Na/H exchange, Na-K-2Cl cotransport, Ca2+ activated K+ channel, or AE1-mediated SO4 transport. In contrast, K-Cl cotransport was twice as active in BXD-31 as in DBA/2J cells. Cl- dependent K+ efflux from BXD-31 cells displayed steep activation by acid pH (with maximal transport occurring at pH 6.75), whereas DBA/2J erythrocytes displayed a far less dramatic response to pH. Both strains displayed regulatory volume decrease in response to cell swelling. However, a 62% greater loss of cell K+ via K-Cl cotransport was observed in the BXD-31 strain. Furthermore the decreased osmotic fragility of BXD-31 red blood cells was normalized by treatment with nystatin to achieve normal cell K+ and water content. Thus upregulated K-Cl cotransport induces cell dehydration and K+ deficit in BXD-31 erythrocytes and causes their characteristic resistance to osmotic lysis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3