Role of weight-bearing function on expression of myosin isoforms during regeneration of rat soleus muscles

Author:

Bigard X. A.1,Merino D.1,Serrurier B.1,Lienhard F.1,Guezennec Y. C.1,Bockhold K. J.1,Whalen R. G.1

Affiliation:

1. Departement de Physiologie Systemique, Centre d'Etudes et deRecherchesde Medecine Aerospatiale, Bretigny-sur-Orge, France.p

Abstract

The expression of myosin isoforms was studied in regenerated rat soleus muscle during either normal or altered postural activity. Regeneration was induced following injury by venom from the Notechis scutatus scutatus snake. Immunohistochemical analysis showed that, in regenerating soleus muscle after 3 wk of hindlimb suspension, nearly all fibers reacted positively with the myosin heavy chain (MHC) antibody associated with fast-twitch muscle fibers (fast MHC). When 3 wk of recovery with normal weight-bearing activity followed hindlimb suspension, the regeneration soleus muscle exhibited a nearly homogeneous staining with the MHC antibody associated with the slow-twitch muscle fibers (slow MHC). These findings were in accordance with quantitative analysis of the electrophoretic separation of the native myosin isoforms. Immunohistochemical data showed that removal of weight bearing in the 21-day old regenerated soleus muscles resulted in an increase in fast MHC expression. Together, the results of the present study clearly demonstrate that the postural load is an important component in the induction of slow MHC in regenerating muscle and that the control of the expression of MHC in muscle comprising a homogeneous population of fibers deriving from satellite cells appears more homogeneous and more complete than in a nondegenerated one.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Platelet-rich plasma promotes skeletal muscle regeneration and neuromuscular functional reconstitution in a concentration-dependent manner in a rat laceration model;Biochemical and Biophysical Research Communications;2023-09

2. Active Oxygen Defenses;Molecular Basis of Resilience;2018

3. Aging and epigenetic drift: a vicious cycle;Journal of Clinical Investigation;2014-01-02

4. Age-Related Variation in DNA Methylation;Epigenetic Epidemiology;2011-11-01

5. Estrogen status and skeletal muscle recovery from disuse atrophy;Journal of Applied Physiology;2006-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3