Affiliation:
1. Department of Internal Medicine, Yale University School of Medicine,New Haven, Connecticut 06510, USA.
Abstract
The Na pump (Na-K-ATPase) is important for regulation of membrane potential and transport in smooth muscle and heart. The alpha (catalytic)-subunit of this pump has three isoforms: alpha 1 is ubiquitous, but alpha 2 and alpha 3 are mainly localized to excitable tissue. Physiological differences between isoforms are not completely understood, but alpha 3 pumps appear to have a lower affinity for intracellular Na and a higher ouabain affinity than alpha 1 pumps. The alpha 2-and alpha 3-isoform mRNAs are expressed at high levels in the normal adult rat cardiac conduction system. Although alpha 1 and alpha 3 are both globally expressed in neonatal rat myocardia, there is a switch in the myocardial isoform pattern from alpha 3 to alpha 2 after birth. There are also important species differences in cardiac isoform patterns. Furthermore, changes in Na-K-ATPase isoforms in heart and vascular tissue have been reported in association with hypertension, but little is known about isoform expression in normal endothelia. We therefore studied the cellular distribution of Na pump protein isoforms in neonatal and adult myocardia and endothelia. Immunohistochemical analysis of rat tissues showed that the alpha 1-isoform was expressed throughout atrial and ventricular myocardium, with alpha 1 the only isoform detectable in the adult t tubule system. Although alpha 2 was also present in ventricular myocytes, the signal was markedly stronger in conduction tissue and papillary muscle. In hearts from neonatal rats, the alpha 3-isoform predominated in the cardiac conduction system, whereas alpha 2 was not detectable in any structure except vascular endothelium. In tissues and in cell lines representing a variety of species and vessel sizes, endothelia of large vessels expressed primarily alpha 1, whereas alpha 2 could be detected in endothelia of small vessels in rat heart. No evidence of alpha 3 expression in endothelium was found. Thus the complex spatial and developmental regulation of Na pump isoform expression in cardiovascular tissues may provide additional correlates to distinct physiological roles of these transporters.
Publisher
American Physiological Society
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献