Na-K-ATPase alpha-isoform expression in heart and vascular endothelia: cellular and developmental regulation

Author:

Zahler R.1,Sun W.1,Ardito T.1,Kashgarian M.1

Affiliation:

1. Department of Internal Medicine, Yale University School of Medicine,New Haven, Connecticut 06510, USA.

Abstract

The Na pump (Na-K-ATPase) is important for regulation of membrane potential and transport in smooth muscle and heart. The alpha (catalytic)-subunit of this pump has three isoforms: alpha 1 is ubiquitous, but alpha 2 and alpha 3 are mainly localized to excitable tissue. Physiological differences between isoforms are not completely understood, but alpha 3 pumps appear to have a lower affinity for intracellular Na and a higher ouabain affinity than alpha 1 pumps. The alpha 2-and alpha 3-isoform mRNAs are expressed at high levels in the normal adult rat cardiac conduction system. Although alpha 1 and alpha 3 are both globally expressed in neonatal rat myocardia, there is a switch in the myocardial isoform pattern from alpha 3 to alpha 2 after birth. There are also important species differences in cardiac isoform patterns. Furthermore, changes in Na-K-ATPase isoforms in heart and vascular tissue have been reported in association with hypertension, but little is known about isoform expression in normal endothelia. We therefore studied the cellular distribution of Na pump protein isoforms in neonatal and adult myocardia and endothelia. Immunohistochemical analysis of rat tissues showed that the alpha 1-isoform was expressed throughout atrial and ventricular myocardium, with alpha 1 the only isoform detectable in the adult t tubule system. Although alpha 2 was also present in ventricular myocytes, the signal was markedly stronger in conduction tissue and papillary muscle. In hearts from neonatal rats, the alpha 3-isoform predominated in the cardiac conduction system, whereas alpha 2 was not detectable in any structure except vascular endothelium. In tissues and in cell lines representing a variety of species and vessel sizes, endothelia of large vessels expressed primarily alpha 1, whereas alpha 2 could be detected in endothelia of small vessels in rat heart. No evidence of alpha 3 expression in endothelium was found. Thus the complex spatial and developmental regulation of Na pump isoform expression in cardiovascular tissues may provide additional correlates to distinct physiological roles of these transporters.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3