Effects of calponin on isometric force and shortening velocity in permeabilized taenia coli smooth muscle

Author:

Obara K.1,Szymanski P. T.1,Tao T.1,Paul R. J.1

Affiliation:

1. Department of Molecular and Cellular Physiology, University ofCincinnati College of Medicine, Ohio 45267-0576, USA.

Abstract

Calponin, a thin filament-associated protein, inhibits actomyosin adenosinetriphosphatase in solution and has been suggested to modulate smooth muscle contractility. We used permeabilized guinea pig taenia coli smooth muscle to investigate whether calponin can modulate actin-myosin interaction in a more organized contractile system. Fibers were permeabilized with Triton X-100 and glycerol, which permit access of large macromolecules to the contractile apparatus. For contractures elicited by Ca2+ (6.6 microM + 0.1 microM calmodulin), the recombinant alpha-isoform of chicken gizzard calponin (CaP) decreased isometric force (Fo) and unloaded shortening velocity (Vus) in a dose-dependent manner; 1 microM CaP had minimal effects on force (< 10%) but reduced Vus by approximately 50% and 10 microM CaP reduced Fo to 27% of control and Vus to near zero levels. To eliminate any effects of the binding of calmodulin by CaP and consequent inhibition of myosin light chain kinase activity, we also studied fibers activated by thiophosphorylation of the myosin regulatory light chain. Fo was only moderately inhibited, remaining at approximately 75% of control in the presence of CaP (10 microM), whereas Vus was reduced to 32% of control. A similar inhibition was obtained with a mutant (CaPcys175) that retains the ability to bind to actin. CaP phosphorylated by protein kinase C and CaPcys175 mutant labeled with 1,5-IAEDANS, which bind actin poorly, were not effective inhibitors. Our results indicate that 1) CaP more strongly inhibits Vus (approximately cross-bridge cycle rate) than Fo (approximately number of activated cross bridges) and 2) the effects of CaP are related to its binding to actin. Thus the function of CaP in regulation of smooth muscle contractility may be more strongly related to its function as a modulator of velocity, as related to the "latch state," than as an "on-off" switch.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3