Alternate stimulation of apical CFTR by genistein in epithelia

Author:

Illek B.1,Fischer H.1,Machen T. E.1

Affiliation:

1. Department of Molecular and Cell Biology, University of California atBerkeley 94720, USA.

Abstract

The cystic fibrosis transmembrane regulator (CFTR) is a Cl- channel regulated by adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A. A cAMP-independent activation has been recently shown for the protein tyrosine kinase inhibitor genistein in CFTR-transfected NIH/3T3 fibroblasts. We further studied the role of genistein on Cl- secretion in HT-29/B6 and T84 colonic epithelial cells, which express native CFTR in their apical membranes. Transepithelial Cl- secretion was more effectively stimulated in T84 cells when compared with HT-29/B6 cells by mucosal perfusion with 50 microM genistein. Genistein, like the cAMP agonist forskolin, stimulated CFTR activity in cell-attached patches of single cells with similar slope conductances of 8.5 +/- 0.5 and 9.2 +/- 0.3 pS, respectively. Monolayers in Ussing chambers were basolaterally permeabilized with the pore former alpha-toxin, and gradient-driven Cl- current across the apical membrane (ICl) was measured. ICl was stimulated by serosal (i.e., cytosolic) cAMP (half-maximal stimulatory concentration = 9.8 +/- 1.9 microM). In the presence of cAMP (> 5 microM), subsequent mucosal, but not serosal, addition of genistein further increased Icl by approximately 16%; in the absence of cytosolic cAMP, genistein had no effect on ICl. The inactive analogue daidzein had no effect. When cAMP agonists were removed in the continued presence of genistein, ICl remained elevated in both permeabilized and intact monolayers as well as in cell-attached patches of single cells. In addition, genistein blocked K- currents across the basolateral membrane in apically amphotericin B-permeabilized monolayers (half maximal inhibitory concentration = 44.2 +/- 8.1 microM). Therefore, in intact epithelia, the overall secretory response to genistein is composed of stimulatory effects on the apical CFTR and inhibitory effects on the basolateral K+ conductance. We propose that genistein blocks a phosphatase, which regulates CFTR during cAMP-dependent stimulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3