Signals mediating stimulation of cardiomyocyte glucose transport by the alpha-adrenergic agonist phenylephrine

Author:

Fischer Y.1,Kamp J.1,Thomas J.1,Popping S.1,Rose H.1,Carpene C.1,Kammermeier H.1

Affiliation:

1. Institute of Physiology, Medical Faculty, Rheinisch-Westfalische Technische Hochschule Aachen, Germany.

Abstract

Phenylephrine, a potent stimulator of cardiomyocyte glucose transport (GT), caused a rapid rise in cytosolic Ca2+ by 30%. Agents inducing a similar Ca2+ response did not stimulate (angiotension II, vasopressin) or inhibited GT by 20% (elevated extracellular Ca2+). Stimulation of GT by phorbol myristate acetate was additive to both phases of phenylephrine's effect (4 min, 60 min). Phenylephrine had no influence on the adenosine 3', 5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) levels. Agents raising cAMP (isoproterenol) or cGMP (e.g., nitroprusside) did not stimulate GT. Wortmannin (inhibitor of 1-phosphatidylinositol 3-kinase) suppressed the action of insulin on GT but not that of phenylephrine. In contrast, the Na+/H+ exchange inhibitor amiloride (which blocks phenylephrine-induced cytosolic alkalinization or even lowers cellular pH) depressed the effect of phenylephrine by 50%, whereas insulin-stimulated GT was little affected. However, raising extracellular pH up to 8.4 failed to increase GT. Lowering pH to 6.8 decreased phenylephrine's effect by 40% whereas insulin-dependent GT was not significantly altered. Clorgyline, tranylcypromine (monoamine oxidase inhibitors), and added catalase suppressed the slow phase of phenylephrine's action, whereas amiloride also affected the fast phase. We conclude that 1) stimulation of cardiomyocyte GT by phenylephrine does not involve cAMP, cGMP, or 1-phosphatidylinositol 3-kinase; 2) protein kinase C activation cannot explain the full extent of stimulation; 3) Ca2+ release or cytosolic alkalinization may be required but is not sufficient to trigger phenylephrine's action, and 4) the slow phase of stimulation is mediated by the monoamine oxidase-dependent degradation of phenylephrine and by the resulting H2O2 formation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3