α-Actinin-1 phosphorylation modulates pressure-induced colon cancer cell adhesion through regulation of focal adhesion kinase-Src interaction

Author:

Craig David H.,Haimovich Beatrice,Basson Marc D.

Abstract

Physical forces including pressure, strain, and shear can be converted into intracellular signals that regulate diverse aspects of cell biology. Exposure to increased extracellular pressure stimulates colon cancer cell adhesion by a β1-integrin-dependent mechanism that requires an intact cytoskeleton and activation of focal adhesion kinase (FAK) and Src. α-Actinin facilitates focal adhesion formation and physically links integrin-associated focal adhesion complexes with the cytoskeleton. We therefore hypothesized that α-actinin may be necessary for the mechanical response pathway that mediates pressure-stimulated cell adhesion. We reduced α-actinin-1 and α-actinin-4 expression with isoform-specific small interfering (si)RNA. Silencing of α-actinin-1, but not α-actinin-4, blocked pressure-stimulated cell adhesion in human SW620, HT-29, and Caco-2 colon cancer cell lines. Cell exposure to increased extracellular pressure stimulated α-actinin-1 tyrosine phosphorylation and α-actinin-1 interaction with FAK and/or Src, and enhanced FAK phosphorylation at residues Y397 and Y576. The requirement for α-actinin-1 phosphorylation in the pressure response was investigated by expressing the α-actinin-1 tyrosine phosphorylation mutant Y12F in the colon cancer cells. Expression of Y12F blocked pressure-mediated adhesion and inhibited the pressure-induced association of α-actinin-1 with FAK and Src, as well as FAK activation. Furthermore, siRNA-mediated reduction of α-actinin-1 eliminated the pressure-induced association of α-actinin-1 and Src with β1-integrin receptor, as well as FAK-Src complex formation. These results suggest that α-actinin-1 phosphorylation at Y12 plays a crucial role in pressure-activated cell adhesion and mechanotransduction by facilitating Src recruitment to β1-integrin, and consequently the association of FAK with Src, to enhance FAK phosphorylation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3