Burn-induced hypermetabolism and skeletal muscle dysfunction

Author:

Knuth Carly M1,Auger Christopher2,Jeschke Marc G.3

Affiliation:

1. Institute of Medical Science, University of Toronto, Canada

2. Sunnybrook Research Institute, Toronto, Canada

3. Institute of Medical Science, University of Toronto, Canada; Departments of Surgery and Immunology, University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada

Abstract

Critical illnesses, including sepsis, cancer cachexia and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response in comparison to other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism as it primarily provides a main source of fuel in support of wound healing. Interestingly, muscle catabolism is sustained long after the wound has healed, indicating that additional mechanisms beyond wound healing are involved. In this review, we discuss the distinctive pathophysiological response to burn injury with a focus on skeletal muscle function and metabolism. We first examine the diverse consequences on skeletal muscle dysfunction between thermal, electrical and chemical burns. We then provide a comprehensive overview of the known mechanisms underlying skeletal muscle dysfunction that may be attributed to hypermetabolism. Lastly, we review the most promising current treatment options to mitigate muscle catabolism, and by extension improve morbidity and mortality, and end with future directions which have the potential to significantly improve patient care.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

HHS | National Institutes of Health

Canada Foundation for Innovation

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3