Affiliation:
1. Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Charité University Hospital, Humboldt University of Berlin, 13125 Berlin; and Medical School Hannover, Department of Nephrology, D-30625 Hannover, Germany
Abstract
The initiation of contractile force in arterial smooth muscle (SM) is believed to be regulated by the intracellular Ca2+concentration and SM myosin type II phosphorylation. We tested the hypothesis that SM myosin type II operates as a molecular motor protein in electromechanical, but not in protein kinase C (PKC)-induced, contraction of small resistance-sized cerebral arteries. We utilized a SM type II myosin heavy chain (MHC) knockout mouse model and measured arterial wall Ca2+ concentration ([Ca2+]i) and the diameter of pressurized cerebral arteries (30–100 μm) by means of digital fluorescence video imaging. Intravasal pressure elevation caused a graded [Ca2+]i increase and constricted cerebral arteries of neonatal wild-type mice by 20–30%. In contrast, intravasal pressure elevation caused a graded increase of [Ca2+]i without constriction in (−/−) MHC-deficient arteries. KCl (60 mM) induced a further [Ca2+]i increase but failed to induce vasoconstriction of (−/−) MHC-deficient cerebral arteries. Activation of PKC by phorbol ester (phorbol 12-myristate 13-acetate, 100 nM) induced a strong, sustained constriction of (−/−) MHC-deficient cerebral arteries without changing [Ca2+]i. These results demonstrate a major role for SM type II myosin in the development of myogenic tone and Ca2+-dependent constriction of resistance-sized cerebral arteries. In contrast, the sustained contractile response did not depend on myosin and intracellular Ca2+ but instead depended on PKC. We suggest that SM myosin type II operates as a molecular motor protein in the development of myogenic tone but not in pharmacomechanical coupling by PKC in cerebral arteries. Thus PKC-dependent phosphorylation of cytoskeletal proteins may be responsible for sustained contraction in vascular SM.
Publisher
American Physiological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Activity Methods for Cardiovascular System Diseases;Methods for Preclinical Evaluation of Bioactive Natural Products;2023-06-25
2. Vascular mechanotransduction;Physiological Reviews;2023-04-01
3. Enzymatic changes in myosin regulatory proteins may explain vasoplegia in terminally ill patients with sepsis;Bioscience Reports;2016-03-03
4. Studies in Isolated Organs;Drug Discovery and Evaluation: Pharmacological Assays;2016
5. Studies in Isolated Organs;Drug Discovery and Evaluation: Pharmacological Assays;2015