Author:
Ben-Yosef Yaara,Miller Ariel,Shapiro Sarah,Lahat Nitza
Abstract
Exposure of endothelial cells (ECs) to hypoxia has separately been shown to induce their angiogenesis or death. Matrix metalloproteinase (MMP)-2 is associated with EC angiogenesis, although recent studies also implicate this molecule in EC death. We studied the effect of hypoxia in the absence or presence of TNF-α (characteristic of the inflammatory microenvironment accompanying hypoxia) on MMP-2 expression and its role in angiogenesis (proliferation, migration, and tube formation) and in the death of primary human umbilical vein endothelial cells (HUVECs). Hypoxia alone (24–48 h in 0.3% O2in the hypoxic chamber) and furthermore, when combined with TNF-α, significantly enhanced MMP-2 expression and activity. Hypoxia also led to a reduction in membrane type 1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 mRNA and protein while enhancing the expression of αvβ3integrin and the cytoskeletal protein phosphopaxillin. Moreover, hypoxia led to colocalization of αvβ3and MMP-2, but not MT1-MMP, with phosphopaxillin in ECs. These results suggest MT1-MMP-independent activation of MMP-2 during hypoxia and support interactions between the ECM, integrins, and the cytoskeleton in hypoxia-induced MMP-2-related functions. Hypoxia enhanced EC migration in an MMP-2-dependent manner while leading to a reduction of cell number via their apoptosis, which was also dependent on MMP-2. In addition, hypoxia caused an aberrant tubelike formation on Matrigel that appeared to be unaffected by MMP-2. The hypoxia-induced, MMP-2-dependent migration of ECs is in accordance with the proangiogenic role ascribed to MMP-2, while the involvement of this protease in the hypoxia-related death of ECs supports an additional apoptotic role for this protease. Hence, in the hypoxic microenvironment, MMP-2 appears to have a dual autocrine role in determining the fate of ECs.
Publisher
American Physiological Society
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献