Chloride self-exchange in toad skeletal muscle in vivo and in vitro

Author:

Macchia D. D.

Abstract

The exchange of cellular Cl with 36Cl has been measured in saline-perfused hindlimb muscles of the pithed toad and compared with cellular Cl exchange in isolated muscles incubated in the vitro either in toad Ringer solution or in toad plasma. In the perfused hindlimb, the rate of 36Cl efflux from muscle cells [17.0 +/- 0.9 pmol Cl.(cm2 plasma membrane.s)-1] was only 40% as fast as that of the 36Cl influx. The discrepancy between Cl influx and efflux was accompanied by a cellular accumulation of Cl against the electrochemical gradient for this anion. Concurrently, the cells took up Na in amounts at least equal to the accumulated Cl. During this accumulation of Na and Cl, the mean resting potential remained constant at a value of -89.2 +/- 1.9 (SE) mV. Na and Cl were taken up by the muscle cells of the perfused hindlimb without a concomitant decrease in cellular K content; i.e., without evidence of inhibition of the Na-K pump. The rate constant for cellular 36Cl efflux from isolated toad muscles preincubated for 3 h in vitro in toad Ringer solution was about five times faster than that of muscles in the perfused hindlimb and similar in magnitude to published values for Cl fluxes in frog muscle. Cellular Cl efflux from muscles briefly preincubated in vitro for 15 min instead of 3 h was significantly slower than after prolonged preincubation. In vitro incubation of isolated toad muscles in toad plasma slowed the cellular 36Cl efflux to values approaching those measured in the perfused hindlimb, without comparably depressing the 36Cl influx. It is suggested that the uptake of NaCl by the cells of perfused hindlimb muscle may proceed by an electroneutral inward cotransport of Na and Cl on the same carrier.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3