Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay

Author:

Fink Bruno,Laude Karine,McCann Louise,Doughan Abdul,Harrison David G.,Dikalov Sergey

Abstract

Recently, it was demonstrated that superoxide oxidizes dihydroethidium to a specific fluorescent product (oxyethidium) that differs from ethidium by the presence of an additional oxygen atom in its molecular structure (Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, and Kalyanaraman B. Free Radic Biol Med 34: 1359–1368, 2003). We have adapted this new HPLC-based assay to quantify this product as a tool to estimate intracellular superoxide in intact tissues. Ethidium and oxyethidium were separated using a C-18 column and quantified using fluorescence detection. Initial cell-free experiments with potassium superoxide and xanthine oxidase confirmed the formation of oxyethidium from dihydroethidium. The formation of oxyethidium was inhibited by superoxide dismutase but not catalase and did not occur upon the addition of H2O2, peroxynitrite, or hypochlorous acid. In bovine aortic endothelial cells (BAEC) and murine aortas, the redox cycling drug menadione increased the formation of oxyethidium from dihydroethidium ninefold (0.4 nmol/mg in control vs. 3.6 nmol/mg with 20 μM menadione), and polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) significantly inhibited this effect. Treatment of BAEC with angiotensin II caused a twofold increase in oxyethidium formation, and this effect also was reduced by PEG-SOD (0.5 nmol/mg). In addition, in the aortas of mice with angiotensin II-induced hypertension and DOCA-salt hypertension, the formation of oxyethidium was increased in a manner corresponding to superoxide production estimated on the basis of cytochrome c reduction. Detection of oxyethidium using HPLC represents a new, convenient, quantitative method for the detection of superoxide in intact cells and tissues.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3