TRPV2 channels mediate insulin secretion induced by cell swelling in mouse pancreatic β-cells

Author:

Sawatani Toshiaki1,Kaneko Yukiko K.1ORCID,Doutsu Isao1,Ogawa Ai1,Ishikawa Tomohisa1ORCID

Affiliation:

1. Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan

Abstract

β-Cell swelling induces membrane depolarization, which has been suggested to be caused at least partly by the activation of cation channels. Here, we show the identification of the cation channels. In isolated mouse pancreatic β-cells, the exposure to 30% hypotonic solution elicited an increase in cytosolic Ca2+ concentration ([Ca2+]c). The [Ca2+]c elevation was partially inhibited by ruthenium red, a blocker of several Ca2+-permeable channels including transient receptor potential vanilloid receptors [transient receptor potential cation channel subfamily V (TRPV)], and by nicardipine, but not by the depletion of intracellular Ca2+ stores with thapsigargin and caffeine. The hypotonic stimulation also increased insulin secretion from isolated mouse islets, which was significantly suppressed by ruthenium red. Expression of TRPV2 and TRPV4 was confirmed in mouse pancreatic islets and the MIN6 β-cell line by RT-PCR, Western blot, and immunohistochemical analyses. However, neither 4α-phorbol 12,13-didecanoate nor GSK1016790A, TRPV4 activators, showed any apparent effect on [Ca2+]c in isolated mouse β-cells or in MIN6 cells. In contrast, probenecid, a TRPV2 activator, induced an increase in [Ca2+]c in MIN6 cells, which was attenuated by ruthenium red. Moreover, the [Ca2+]c elevation induced by 30% hypotonic stimulation was significantly reduced by knockdown of TRPV2 with siRNA and by tranilast, a TRPV2 inhibitor. The knockdown of TRPV2 also decreased insulin secretion induced by the hypotonic stimulation. In addition, glucose-stimulated insulin secretion was also significantly reduced in the TRPV2-knockdown MIN6 cells. These results suggest that osmotic cell swelling activates TRPV2 in mouse β-cells, thereby causing membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels and insulin secretion.

Funder

Japan Society for the Promotion of Science (JSPS)

Takeda Science Foundation

University of Shizuoka

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3