Characterization of muscle ankyrin repeat proteins in human skeletal muscle

Author:

Wette Stefan G.1,Smith Heather K.2,Lamb Graham D.3,Murphy Robyn M.1ORCID

Affiliation:

1. Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia;

2. Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand

3. School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia; and

Abstract

Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1) the absolute amount of MARPs and 2) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanosensory Structures in the Mechanotransduction System of Muscle Fibers;Российский физиологический журнал им  И  М  Сеченова;2023-08-01

2. Mechanosensory Structures in the Mechanotransduction System of Muscle Fibers;Journal of Evolutionary Biochemistry and Physiology;2023-07

3. Ferroptosis in calcium oxalate kidney stone formation and the possible regulatory mechanism of ANKRD1;Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;2023-06

4. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles;International Journal of Molecular Sciences;2023-01-26

5. Titin force in muscle cells alters lattice order, thick and thin filament protein formation;Proceedings of the National Academy of Sciences;2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3