Molecular characterization of a novel UT-A urea transporter isoform (UT-A5) in testis

Author:

Fenton R. A.1,Howorth A.1,Cooper G. J.1,Meccariello R.2,Morris I. D.1,Smith C. P.1

Affiliation:

1. School of Biological Science, University of Manchester, Manchester M13 9PT, United Kingdom; and

2. Seconda Universita' degli Studi di Napoli, Facolta' di Medicina e Chirurgia, 1680138 Napoli, Italy

Abstract

Urea movement across plasma membranes is modulated by specialized transporter proteins that are products of two genes, termed UT-A and UT-B. These proteins play key roles in the urinary concentrating mechanism and fluid homeostasis. We have isolated and characterized a 1.4-kb cDNA from testes encoding a new isoform (UT-A5) belonging to the UT-A transporter family. For comparison, we also isolated a 2.0-kb cDNA from mouse kidney inner medulla encoding the mouse UT-A3 homologue. The UT-A5 cDNA has a putative open reading frame encoding a 323-amino acid protein, making UT-A5 the smallest UT-A family member in terms of molecular size. Its putative topology is of particular interest, because it calls into question earlier models of UT-A transporter structure. Expression of UT-A5 cRNA in Xenopus oocytes mediates phloretin-inhibitable urea uptake and does not translocate water. The distribution of UT-A5 mRNA is restricted to the peritubular myoid cells forming the outermost layer of the seminiferous tubules within the testes and is not detected in kidney. UT-A5 mRNA levels are coordinated with the stage of testes development and increase 15 days postpartum, commensurate with the start of seminiferous tubule fluid movement.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urea Transporters in Health and Disease;Studies of Epithelial Transporters and Ion Channels;2020

2. Physiological functions of urea transporter B;Pflügers Archiv - European Journal of Physiology;2019-11-22

3. Vasopressin in the Kidney—Historical Aspects;Textbook of Nephro-Endocrinology;2018

4. Generation and phenotypic analysis of mice lacking all urea transporters;Kidney International;2017-02

5. The Expression of AQP5 and UTs in the Sweat Glands of Uremic Patients;BioMed Research International;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3