Clathrin in gastric acid secretory (parietal) cells: biochemical characterization and subcellular localization

Author:

Okamoto Curtis T.1,Duman Joseph G.2,Tyagarajan Kamala2,McDonald Kent L.23,Jeng Young Y.1,McKinney Jeana1,Forte Trudy M.4,Forte John G.2

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles 90089-9121; and

2. Department of Molecular and Cell Biology,

3. Electron Microscope Lab, University of California, Berkeley, California 94720

4. Lawrence Berkeley Laboratory, and

Abstract

Clathrin from H-K-ATPase-rich membranes derived from the tubulovesicular compartment of rabbit and hog gastric acid secretory (parietal) cells was characterized biochemically, and the subcellular localization of membrane-associated clathrin in parietal cells was characterized by immunofluorescence, electron microscopy, and immunoelectron microscopy. Clathrin from H-K- ATPase-rich membranes was determined to be comprised of conventional clathrin heavy chain and a predominance of clathrin light chain A. Clathrin and adaptors could be induced to polymerize quantitatively in vitro, forming 120-nm-diameter basketlike structures. In digitonin-permeabilized resting parietal cells, the intracellular distribution of immunofluorescently labeled clathrin was suggestive of labeling of the tubulovesicular compartment. Clathrin was also unexpectedly localized to canalicular (apical) membranes, as were α-adaptin and dynamin, suggesting that this membrane domain of resting parietal cells is endocytotically active. At the ultrastructural level, clathrin was immunolocalized to canalicular and tubulovesicular membranes. H-K-ATPase was immunolocalized to the same membrane domains as clathrin but did not appear to be enriched at the specific subdomains that were enriched in clathrin. Finally, in immunofluorescently labeled primary cultures of parietal cells, in contrast to the H-K-ATPase, intracellular clathrin was found not to translocate to the apical membrane on secretagogue stimulation. Taken together, these biochemical and morphological data provide a framework for characterizing the role of clathrin in the regulation of membrane trafficking from tubulovesicles and at the canalicular membrane in parietal cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3