Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells

Author:

Nguyen Hiep T.1,Adam Rosalyn M.1,Bride Samuel H.1,Park John M.1,Peters Craig A.1,Freeman Michael R.1

Affiliation:

1. The Urologic Laboratory, Department of Urology, Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115

Abstract

Cyclic mechanical stretch of bladder smooth muscle cells (SMC) increases rates of DNA synthesis and stimulates transcription of the gene for heparin-binding epidermal growth factor-like growth factor (HB-EGF), an ErbB1/EGF receptor ligand that has been linked to hypertrophic bladder growth. In this study we sought to clarify the signaling pathways responsible for mechanotransduction of the stretch stimulus. HB-EGF mRNA levels, DNA synthesis, and AP-1/Ets DNA binding activities were induced by repetitive stretch of primary culture rat bladder SMC. Inhibitors of the p38 SAPK2 pathway, the angiotensin receptor type 1 (AT1), and the ErbB2 tyrosine kinase reduced each of these activities, while an inhibitor of the extracellular signal-regulated kinase mitogen-activated protein kinase (Erk-MAPK) pathway had no effect. Stretch rapidly activated stress-activated protein kinase 2 (p38 SAPK2) and Jun NH2-terminal kinase (JNK)/SAPK pathways but not the Erk-MAPK pathway and induced ErbB2 but not ErbB1 phosphorylation. Angiotensin II (ANG II) a bladder SMC mitogen previously linked to the stretch response, did not activate ErbB2, and ErbB2 activation occurred in response to stretch in the presence of an ANG receptor inhibitor, indicating that activation of the AT1-mediated pathway and the ErbB2-dependent pathway occurs by independent mechanisms. p38 SAPK2 and JNK/SAPK signaling also appeared to be independent of the ErbB2 and AT1 pathways. These findings indicate that stretch-stimulated DNA synthesis and gene expression in normal bladder SMC occur via multiple independent receptor systems (e.g., AT1 and ErbB2) and at least one MAPK pathway (p38 SAPK2). Further, we show that the Erk-MAPK pathway, which in most systems is linked to receptor-dependent cell growth responses, is not involved in progression to DNA synthesis or in the response of the HB-EGF gene to mechanical forces.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3