Affiliation:
1. Departments of Biology and Chemistry, Peale Science Center, Hope College, Holland, Michigan 49422-9000
Abstract
Vasopressin-activated Ca2+-mobilizing (VACM-1) receptor binds arginine vasopressin (AVP) but does not have amino acid sequence homology with the traditional AVP receptors. VACM-1, however, is homologous with a newly discovered cullin family of proteins that has been implicated in the regulation of cell cycle through the ubiquitin-mediated degradation of cyclin-dependent kinase inhibitors. Because cell cycle processes can be regulated by the transmembrane signal transduction systems, the effects of VACM-1 expression on the Ca2+ and cAMP-dependent signaling pathway were examined in a stable cell line expressing VACM-1 in VACM-1 transfected COS-1 cells and in cells cotransfected with VACM-1 and the adenylyl cyclase-linked V2 AVP receptor cDNAs. Expression of the VACM-1 gene reduced basal as well as forskolin- and AVP-stimulated cAMP production. In cells cotransfected with VACM-1 and the V2 receptor, the AVP- and forskolin-induced increases in adenylyl cyclase activity and cAMP production were inhibited. The inhibitory effect of VACM-1 on cAMP production could be reversed by pretreating cells with staurosporin, a protein kinase A (PKA) inhibitor, or by mutating S730A, the PKA-dependent phosphorylation site in the VACM-1 sequence. The protein kinase C specific inhibitor Gö-6983 further enhanced the inhibitory effect of VACM-1 on AVP-stimulated cAMP production. Finally, AVP stimulatedd- myo-inositol 1,4,5-trisphosphate production both in the transiently transfected COS-1 cells and in the stable cell line expressing VACM-1, but not in the control COS-1 and Chinese hamster ovary cells. Our data demonstrate that VACM-1, the first mammalian cullin protein to be characterized, is involved in the regulation of signaling.
Publisher
American Physiological Society
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献