Characterization of huJAM: evidence for involvement in cell-cell contact and tight junction regulation

Author:

Liang Tony W.1,DeMarco Richard A.1,Mrsny Randy J.2,Gurney Austin3,Gray Alane3,Hooley Jeffery4,Aaron Holly L.4,Huang Arthur3,Klassen Toni5,Tumas Daniel B.6,Fong Sherman1

Affiliation:

1. Department of Immunology,

2. Department of Pharmacology Research and Development,

3. Department of Molecular Biology,

4. Department of Cell Biology and Technology,

5. Department of Antibody Technology, and

6. Department of Pathology, Genentech, South San Francisco, California 94080

Abstract

Cell-cell interactions of the mucosal epithelia are important for the maintenance and establishment of epithelial barrier function. During events of inflammation, such cell-cell interactions are often disrupted, resulting in a leaky epithelial barrier, which in turn can lead to various inflammatory and infective dysfunctions. Human junctional adhesion molecule (huJAM), found on the mucosal epithelia and vascular endothelia of many major organ systems, is a membrane glycoprotein which resolves to a doublet band of ∼40 and ∼37 kDa under SDS-PAGE analysis, representing differentially glycosylated forms of the same protein. huJAM was localized to the lateral membrane of Caco-2 cells (a human colonic epithelial cell line) monolayers, in an area basolateral of the epithelial tight junctions (TJ). Through functional and biochemical assays, we show huJAM to be able to homotypically associate and to participate in TJ restitution after trypsin-EDTA disruption. Furthermore, we also observed a migration of huJAM expression toward areas of cell-cell contacts during events of cell adhesion and monolayer formation. These qualities makes huJAM a likely player in the regulation of cell-cell contacts and the subsequent formation of TJs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3