Affiliation:
1. Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
Abstract
Intracellular ATP depletion is a hallmark event in ischemic injury. It has been extensively characterized in models of chemical anoxia in vitro. In contrast, the fate of GTP during ischemia remains unknown. We used LLC-PK proximal tubular cells to measure GTP and ATP changes during anoxia. In 45 min, antimycin A decreased ATP and GTP to 8% and 2% of controls, respectively. Ischemia in vivo resulted in comparable reductions in GTP and ATP. After 2 h of recovery, GTP levels in LLC-PK cells increased to 65% while ATP increased to 29%. We also investigated steady-state models of selective ATP or GTP depletion. Combinations of antimycin A and mycophenolic acid selectively reduced GTP to 51% or 25% of control. Similarly, alanosine selectively reduced ATP to 61% or 26% of control. Selective GTP depletion resulted in significant apoptosis. Selective ATP depletion caused mostly necrosis. These models of ATP or GTP depletion can prove useful in dissecting the relative contribution of the two nucleotides to the ischemic phenotype.
Publisher
American Physiological Society
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献