Intracellular calcium events activated by ATP in murine colonic myocytes

Author:

Bayguinov Orline1,Hagen Brian1,Bonev Adrian D.2,Nelson Mark T.2,Sanders Kenton M.1

Affiliation:

1. Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557; and

2. Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont 05405

Abstract

ATP is a candidate enteric inhibitory neurotransmitter in visceral smooth muscles. ATP hyperpolarizes visceral muscles via activation of small-conductance, Ca2+-activated K+ (SK) channels. Coupling between ATP stimulation and SK channels may be mediated by localized Ca2+ release. Isolated myocytes of the murine colon produced spontaneous, localized Ca2+ release events. These events corresponded to spontaneous transient outward currents (STOCs) consisting of charybdotoxin (ChTX)-sensitive and -insensitive events. ChTX-insensitive STOCs were inhibited by apamin. Localized Ca2+ transients were not blocked by ryanodine, but these events were reduced in magnitude and frequency by xestospongin C (Xe-C), a blocker of inositol 1,4,5-trisphosphate receptors. Thus we have termed the localized Ca2+ events in colonic myocytes “Ca2+ puffs.” The P2Y receptor agonist 2-methylthio-ATP (2-MeS-ATP) increased the intensity and frequency of Ca2+ puffs. 2-MeS-ATP also increased STOCs in association with the increase in Ca2+ puffs. Pyridoxal-phospate-6-azophenyl-2′,4′-disculfonic acid tetrasodium, a P2 receptor inhibitor, blocked responses to 2-MeS-ATP. Spontaneous Ca2+ transients and the effects of 2-MeS-ATP on Ca2+ puffs and STOCs were blocked by U-73122, an inhibitor of phospholipase C. Xe-C and ryanodine also blocked responses to 2-MeS-ATP, suggesting that, in addition to release from IP3receptor-operated stores, ryanodine receptors may be recruited during agonist stimulation to amplify release of Ca2+. These data suggest that localized Ca2+ release modulates Ca2+-dependent ionic conductances in the plasma membrane. Localized Ca2+ release may contribute to the electrical responses resulting from purinergic stimulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3