Expression of the chloride channel ClC-2 in the murine small intestine epithelium

Author:

Gyömörey Katalin1,Yeger Herman1,Ackerley Cameron2,Garami Elizabeth1,Bear Christine E.1

Affiliation:

1. Programme in Cell Biology and

2. Department of Pathology in the Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8

Abstract

The chloride channel ClC-2 has been implicated in neonatal airway chloride secretion. To assess its role in secretion by the small intestine, we assessed its subcellular expression in ileal segments obtained from mice and studied the chloride transport properties of this tissue. Chloride secretion across the mucosa of murine ileal segments was assessed in Ussing chambers as negative short-circuit current ( Isc). If ClC-2 contributed to chloride secretion, we predicted on the basis of previous studies that negative Iscwould be stimulated by dilution of the mucosal bath and that this response would depend on chloride ion and would be blocked by the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid but not by DIDS. In fact, mucosal hypotonicity did stimulate a chloride-dependent change in Iscthat exhibited pharmacological properties consistent with those of ClC-2. This secretory response is unlikely to be mediated by the cystic fibrosis transmembrane conductance regulator (CFTR) channel because it was also observed in CFTR knockout animals. Assessment of the native expression pattern of ClC-2 protein in the murine intestinal epithelium by confocal and electron microscopy showed that ClC-2 exhibits a novel distribution, a distribution pattern somewhat unexpected for a channel involved in chloride secretion. Immunolabeled ClC-2 was detected predominantly at the tight junction complex between adjacent intestinal epithelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3