Phospholamban ablation enhances relaxation in the murine soleus

Author:

Slack J. P.1,Grupp I. L.1,Luo W.1,Kranias E. G.1

Affiliation:

1. Department of Pharmacology and Cell Biophysics, University ofCincinnati College of Medicine, Ohio 45267-0575, USA.

Abstract

Phospholamban (PLB) is expressed in slow-twitch skeletal, cardiac, and smooth muscles. Several studies have indicated that it is an important regulator of basal contractility and the stimulatory responses to isoproterenol in the mammalian heart. To determine whether PLB is also a key modulator of slow-twitch skeletal muscle contractility, we examined isometric twitch contractions of isolated, intact soleus muscles from wild-type (WT) and PLB-deficient mice in parallel. Soleus muscles from PLB-deficient mice exhibited a significant (25%) decrease in the time to half relaxation, with no change in contraction time compared with WT soleus muscles. The observed enhancement of relaxation in the PLB-deficient soleus was not associated with alterations in the protein levels of either the sarcoplasmic reticular Ca(2+)-adenosinetriphosphatase or the ryanodine receptor. Examination of the effects of isoproterenol on the twitch kinetics of these muscles revealed 1) no effect on the contraction times of either WT or PLB-deficient muscles and 2) a significant decrease in the half relaxation time of the WT soleus, whereas this parameter remained unchanged in the PLB-deficient muscle. Furthermore, with maximal isoproterenol stimulation, the half relaxation time of the WT soleus was similar to that of the nonstimulated PLB-deficient soleus. These results suggest that PLB is a key determinant of relaxation in slow-twitch skeletal muscle under basal conditions and during isoproterenol stimulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3