Energy turnover of vascular endothelial cells

Author:

Culic O.1,Gruwel M. L.1,Schrader J.1

Affiliation:

1. Institut fur Herz- und Kreislaufphysiologie, Heinrich HeineUniversitat Dusseldorf, Germany.

Abstract

Two noninvasive methods, calorimetry and 31P nuclear magnetic resonance (NMR), were used to further define energy-consuming and energy-providing reactions in endothelial cells. With 31P-NMR, cellular ATP content was measured; with calorimetry, heat flux as a result of ATP turnover was measured. For these measurements, pig aortic endothelial cells were cultured on microcarrier beads and perfused in a column at constant flow rate. Pig aortic endothelial cells synthesize ATP mainly through glycolysis and, as determined by NMR, contain no phosphocreatine. In such a system, calorimetry-measured heat flux reflects rate of cellular ATP turnover. By use of inhibitors of ATP-dependent processes, the following changes in basal heat flux (231 +/- 65.5 microW/mg protein) were obtained: 18% for 2,3-butanedione monoxime (inhibitor of actomyosin-ATPase), 17% for wortmannin (inhibitor of myosin light chain kinase), 10% for cytochalasin D (inhibitor of actin polymerization), 23% for cycloheximide (inhibitor of protein synthesis), 11% for thapsigargin (inhibitor of endoplasmic reticulum Ca(2+)-ATPase), and 6% for bafilomycin A1 (inhibitor of lysosomal H(+)-ATPase). Cytochalasin D, 2,3-butanedione monoxime, wortmannin, and thapsigargin caused changes in F-actin distribution, as revealed by rhodamine-phalloidin cytochemistry. In a separate experimental series, when cells were perfused with a medium containing no glucose, heat flux decreased by 40% while cellular ATP remained unchanged. Inhibition of glycolysis with 2-deoxy-D-glucose decreased heat flux by 73%, and ATP was no longer visible with 31P-NMR. Despite this massive ATP depletion, which was maintained for 3 h, cells fully recovered heat flux and ATP when 2-deoxy-D-glucose was removed. The results, together with previously published data for Na(+)-K(+)-ATPase [M. L. H. Gruwel, C. Alves, and J. Schrader. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H351-H358, 1995], demonstrate that > 70% of total ATP-consuming processes of endothelial cells can be attributed to specific cellular processes. Actomyosin-ATPase (18%) and protein synthesis (23%) comprise the largest fraction. At least three-fourths of ATP synthesized is provided by glycolysis. Endothelial cells exhibit the remarkable ability to coordinate downregulation of ATP synthesis and consumption when glycolysis is inhibited.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3