Affiliation:
1. Department of Medicine, Hôpital St.-Luc, Université de Montréal, Montreal, Quebec H2X 3J4;
2. Institut de Recherche Clinique de Montréal, Université de Montréal, Montreal, Quebec H2W 1R7; and
3. Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada H3A 1A1
Abstract
In our previous studies, we found that the atrial natriuretic peptide (ANP) binding and guanylyl cyclase activity of A-type natriuretic peptide receptors (NPR-A) were upregulated in renal papillae but downregulated in vascular tissues and glomeruli of rats with deoxycorticosterone acetate (DOCA)-salt hypertension [E. Nuglozeh, G. Gauquelin, R. Garcia, J. Tremblay, and E. L. Schiffrin. Am. J. Physiol. 259 ( Renal Fluid Electrolyte Physiol. 28): F130–F137, 1990]. To further understand the molecular significance of these regulations, we measured the relative abundance of the transcripts of NPR-A and NPR-B by Northern blot in the aorta, mesenteric arteries, adrenal cortex, renal papillae, and lungs in DOCA-salt hypertensive and control rats. In renal papillae we also examined the translation and transcription of NPR-A by ribosome loading and run-on assay. Compared with controls, the steady-state levels of mRNA for NPR-A were increased in the aorta and mesenteric arteries but were decreased in the adrenal cortex and renal papillae in DOCA-salt-treated rats. NPR-B mRNA was decreased in the aorta, mesenteric arteries, and adrenal cortex in hypertensive rats. In lungs the mRNA for both receptors was unchanged. Translation of NPR-A mRNA, as assessed by ribosome loading, was reduced in renal papillae. Transcriptional activity of its gene was not detectable in these tissues. Guanosine 3′,5′-cyclic monophosphate levels generated by NPR-A in renal papillae and by NPR-A and NPR-B in the adrenal cortex, aorta, and mesenteric arteries of DOCA-salt-treated rats remained increased in hypertension. The higher NPR-A activity in the presence of a lower level of its mRNA in renal papillae and the higher NPR-B activity in the presence of a lower level of its mRNA in the vasculature, adrenal cortex, and lungs can alternatively be explained by receptor stabilization or increased receptor recycling.
Publisher
American Physiological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献